Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | funfn | ⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru | ⊢ ( Fun 𝐴 ↔ ( Fun 𝐴 ∧ dom 𝐴 = dom 𝐴 ) ) |
3 | df-fn | ⊢ ( 𝐴 Fn dom 𝐴 ↔ ( Fun 𝐴 ∧ dom 𝐴 = dom 𝐴 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) |