Metamath Proof Explorer


Theorem funfn

Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion funfn ( Fun 𝐴𝐴 Fn dom 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid dom 𝐴 = dom 𝐴
2 1 biantru ( Fun 𝐴 ↔ ( Fun 𝐴 ∧ dom 𝐴 = dom 𝐴 ) )
3 df-fn ( 𝐴 Fn dom 𝐴 ↔ ( Fun 𝐴 ∧ dom 𝐴 = dom 𝐴 ) )
4 2 3 bitr4i ( Fun 𝐴𝐴 Fn dom 𝐴 )