Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | funfnd.1 | ⊢ ( 𝜑 → Fun 𝐴 ) | |
Assertion | funfnd | ⊢ ( 𝜑 → 𝐴 Fn dom 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | ⊢ ( 𝜑 → Fun 𝐴 ) | |
2 | funfn | ⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → 𝐴 Fn dom 𝐴 ) |