Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funfnd
Next ⟩
funi
Metamath Proof Explorer
Ascii
Unicode
Theorem
funfnd
Description:
A function is a function on its domain.
(Contributed by
Glauco Siliprandi
, 23-Oct-2021)
Ref
Expression
Hypothesis
funfnd.1
⊢
φ
→
Fun
⁡
A
Assertion
funfnd
⊢
φ
→
A
Fn
dom
⁡
A
Proof
Step
Hyp
Ref
Expression
1
funfnd.1
⊢
φ
→
Fun
⁡
A
2
funfn
⊢
Fun
⁡
A
↔
A
Fn
dom
⁡
A
3
1
2
sylib
⊢
φ
→
A
Fn
dom
⁡
A