Metamath Proof Explorer


Theorem fvco3

Description: Value of a function composition. (Contributed by NM, 3-Jan-2004) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco3 G : A B C A F G C = F G C

Proof

Step Hyp Ref Expression
1 ffn G : A B G Fn A
2 fvco2 G Fn A C A F G C = F G C
3 1 2 sylan G : A B C A F G C = F G C