Metamath Proof Explorer


Theorem coeq1

Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)

Ref Expression
Assertion coeq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 coss1 ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
2 coss1 ( 𝐵𝐴 → ( 𝐵𝐶 ) ⊆ ( 𝐴𝐶 ) )
3 1 2 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) ∧ ( 𝐵𝐶 ) ⊆ ( 𝐴𝐶 ) ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 eqss ( ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ↔ ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) ∧ ( 𝐵𝐶 ) ⊆ ( 𝐴𝐶 ) ) )
6 3 4 5 3imtr4i ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )