Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | coeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∘ 𝐶 ) = ( 𝐵 ∘ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐶 ) ) | |
2 | coss1 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∘ 𝐶 ) ⊆ ( 𝐴 ∘ 𝐶 ) ) | |
3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐶 ) ∧ ( 𝐵 ∘ 𝐶 ) ⊆ ( 𝐴 ∘ 𝐶 ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | eqss | ⊢ ( ( 𝐴 ∘ 𝐶 ) = ( 𝐵 ∘ 𝐶 ) ↔ ( ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐶 ) ∧ ( 𝐵 ∘ 𝐶 ) ⊆ ( 𝐴 ∘ 𝐶 ) ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∘ 𝐶 ) = ( 𝐵 ∘ 𝐶 ) ) |