Step |
Hyp |
Ref |
Expression |
1 |
|
seqf1o.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqf1o.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
3 |
|
seqf1o.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
4 |
|
seqf1o.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
seqf1o.5 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) |
6 |
|
seqf1olem.5 |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
7 |
|
seqf1olem.6 |
⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
8 |
|
seqf1olem.7 |
⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
9 |
|
seqf1olem.8 |
⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) |
10 |
|
seqf1olem.9 |
⊢ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) |
11 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
12 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) |
13 |
|
fnssres |
⊢ ( ( 𝐺 Fn ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ) |
14 |
11 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ) |
15 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
16 |
|
fnfi |
⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) |
17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) |
18 |
17
|
elexd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ) |
19 |
1 2 3 4 5 6 7 8 9
|
seqf1olem1 |
⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
20 |
|
f1of |
⊢ ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) → 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
22 |
|
fex2 |
⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → 𝐽 ∈ V ) |
23 |
21 15 15 22
|
syl3anc |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
24 |
18 23
|
jca |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ∧ 𝐽 ∈ V ) ) |
25 |
|
fssres |
⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) |
26 |
7 12 25
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) |
27 |
19 26
|
jca |
⊢ ( 𝜑 → ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
28 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐽 → ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ↔ 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) |
29 |
|
feq1 |
⊢ ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) → ( 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ↔ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
30 |
28 29
|
bi2anan9r |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ↔ ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
31 |
|
coeq1 |
⊢ ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝑓 ) ) |
32 |
|
coeq2 |
⊢ ( 𝑓 = 𝐽 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) |
33 |
31 32
|
sylan9eq |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) |
34 |
33
|
seqeq3d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
35 |
34
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
36 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) |
37 |
36
|
seqeq3d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ) |
38 |
37
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
39 |
35 38
|
eqeq12d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) |
40 |
30 39
|
imbi12d |
⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ↔ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) |
41 |
40
|
spc2gv |
⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ∧ 𝐽 ∈ V ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) |
42 |
24 10 27 41
|
syl3c |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
43 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
45 |
4 44
|
seqfveq |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
46 |
42 45
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
48 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
49 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
50 |
|
elfzuz3 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
52 |
|
eluzp1p1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
54 |
|
elfzuz |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
56 |
|
f1of |
⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
57 |
6 56
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
58 |
|
fco |
⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ∧ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
59 |
7 57 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
60 |
59 5
|
fssd |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ) |
61 |
60
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
63 |
48 49 53 55 62
|
seqsplit |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
64 |
|
elfzp12 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
65 |
64
|
biimpa |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
66 |
4 65
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
67 |
|
seqeq1 |
⊢ ( 𝐾 = 𝑀 → seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) = seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ) |
68 |
67
|
eqcomd |
⊢ ( 𝐾 = 𝑀 → seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) = seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ) |
69 |
68
|
fveq1d |
⊢ ( 𝐾 = 𝑀 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) ) |
70 |
|
f1ocnv |
⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
71 |
|
f1of |
⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
72 |
6 70 71
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
73 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
74 |
|
eluzfz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
75 |
4 73 74
|
3syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
76 |
72 75
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
77 |
9 76
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
78 |
|
elfzelz |
⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ∈ ℤ ) |
79 |
|
seq1 |
⊢ ( 𝐾 ∈ ℤ → ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
80 |
77 78 79
|
3syl |
⊢ ( 𝜑 → ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
81 |
69 80
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝐾 = 𝑀 ) |
84 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
85 |
4 84
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
87 |
83 86
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
88 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
89 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐶 ⊆ 𝑆 ) |
90 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
91 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
92 |
|
peano2uz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
93 |
|
fzss1 |
⊢ ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
94 |
55 92 93
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
95 |
48 88 49 53 89 90 91 94
|
seqf1olem2a |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
96 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 1 ∈ ℤ ) |
97 |
|
elfzuz |
⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
98 |
|
fzss1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
99 |
77 97 98
|
3syl |
⊢ ( 𝜑 → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
100 |
99
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
101 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
102 |
100 101
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
103 |
102
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
104 |
|
breq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 < 𝐾 ↔ 𝑥 < 𝐾 ) ) |
105 |
|
id |
⊢ ( 𝑘 = 𝑥 → 𝑘 = 𝑥 ) |
106 |
|
oveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 + 1 ) = ( 𝑥 + 1 ) ) |
107 |
104 105 106
|
ifbieq12d |
⊢ ( 𝑘 = 𝑥 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) |
108 |
107
|
fveq2d |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
109 |
|
fvex |
⊢ ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ∈ V |
110 |
108 8 109
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
111 |
100 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
112 |
77 78
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
113 |
112
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
115 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ℤ ) |
117 |
116
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
118 |
|
elfzle1 |
⊢ ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → 𝐾 ≤ 𝑥 ) |
119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝐾 ≤ 𝑥 ) |
120 |
114 117 119
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ¬ 𝑥 < 𝐾 ) |
121 |
|
iffalse |
⊢ ( ¬ 𝑥 < 𝐾 → if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) = ( 𝑥 + 1 ) ) |
122 |
121
|
fveq2d |
⊢ ( ¬ 𝑥 < 𝐾 → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
123 |
120 122
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
124 |
111 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
125 |
124
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
126 |
103 125
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
127 |
|
fvco3 |
⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
128 |
21 127
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
129 |
100 128
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
130 |
|
fzp1elp1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
131 |
100 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
132 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
133 |
57 132
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
134 |
131 133
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
135 |
126 129 134
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) ) |
136 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) ) |
137 |
51 96 136
|
seqshft2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) |
138 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) |
139 |
57 77 138
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) |
140 |
9
|
fveq2i |
⊢ ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
141 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
142 |
6 75 141
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
143 |
140 142
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = ( 𝑁 + 1 ) ) |
144 |
143
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
145 |
139 144
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
147 |
137 146
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
148 |
95 147
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
149 |
87 148
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
150 |
83
|
seqeq1d |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) = seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
151 |
150
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
152 |
151
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
153 |
82 149 152
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
154 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
155 |
4 154
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
156 |
|
elfzuz |
⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
157 |
|
eluzp1m1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
158 |
155 156 157
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
159 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
160 |
4 159
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
161 |
160
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
162 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
163 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
164 |
161 162 163
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
165 |
|
peano2zm |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) |
166 |
77 78 165
|
3syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℤ ) |
167 |
|
elfzuz3 |
⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
168 |
77 167
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
169 |
112
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
170 |
|
npcan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
171 |
169 162 170
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
172 |
171
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
173 |
168 172
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
174 |
|
eluzp1m1 |
⊢ ( ( ( 𝐾 − 1 ) ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
175 |
166 173 174
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
176 |
164 175
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
177 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
178 |
176 177
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
179 |
178
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
180 |
179 101
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
181 |
180
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
182 |
179 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
183 |
|
elfzm11 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) ) |
184 |
155 112 183
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) ) |
185 |
184
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) |
186 |
185
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 < 𝐾 ) |
187 |
|
iftrue |
⊢ ( 𝑥 < 𝐾 → if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) = 𝑥 ) |
188 |
187
|
fveq2d |
⊢ ( 𝑥 < 𝐾 → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
189 |
186 188
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
190 |
182 189
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
191 |
190
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
192 |
181 191
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
193 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
194 |
|
fzss2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
195 |
176 193 194
|
3syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
196 |
195
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
197 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
198 |
57 197
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
199 |
196 198
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
200 |
179 128
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
201 |
192 199 200
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
202 |
201
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
203 |
158 202
|
seqfveq |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ) |
204 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
205 |
4 154 204
|
3syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
206 |
205
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
207 |
206 148
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
208 |
203 207
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
209 |
196 61
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
210 |
209
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
211 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
212 |
158 210 211
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ) |
213 |
59 77
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝐶 ) |
214 |
5 213
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) |
215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) |
216 |
94
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
217 |
216 62
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
218 |
53 217 48
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
219 |
206 218
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
220 |
212 215 219
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ∧ ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) |
221 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ∧ ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
222 |
220 221
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
223 |
7 5
|
fssd |
⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ) |
224 |
|
fssres |
⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
225 |
223 12 224
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
226 |
|
fco |
⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ∧ 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
227 |
225 21 226
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
228 |
227
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
229 |
179 228
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
230 |
229
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
231 |
158 230 211
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ) |
232 |
|
elfzuz3 |
⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
234 |
100 228
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
235 |
234
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
236 |
233 235 211
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ) |
237 |
223 75
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
238 |
237
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
239 |
231 236 238
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) |
240 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
241 |
239 240
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
242 |
208 222 241
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
243 |
|
seqm1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
244 |
155 156 243
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
245 |
244
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
246 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
247 |
|
elfzelz |
⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝐾 ∈ ℤ ) |
248 |
247
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
249 |
248
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ℂ ) |
250 |
249 162 170
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
251 |
250
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
252 |
233 251
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
253 |
228
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
254 |
211 246 252 158 253
|
seqsplit |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
255 |
250
|
seqeq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) = seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
256 |
255
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
257 |
256
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
258 |
254 257
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
259 |
258
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
260 |
242 245 259
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
261 |
153 260
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
262 |
66 261
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
263 |
63 262
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
264 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
265 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
266 |
264 265
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
267 |
110
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
268 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
269 |
268
|
zred |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
270 |
269
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
271 |
160
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
272 |
271
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
273 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
274 |
272 273
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
275 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
276 |
275
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
277 |
272
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
278 |
270 272 274 276 277
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
279 |
278
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
280 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 = ( 𝑁 + 1 ) ) |
281 |
279 280
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < 𝐾 ) |
282 |
281 188
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
283 |
267 282
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
284 |
283
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
285 |
269
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
286 |
285 281
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ≠ 𝑥 ) |
287 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
288 |
|
fzelp1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
289 |
288
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
290 |
287 289
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
291 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
292 |
|
elfzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) ) |
293 |
291 292
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) ) |
294 |
290 293
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) |
295 |
294
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) |
296 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
297 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) ) |
298 |
296 289 297
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) ) |
299 |
9
|
eqeq1i |
⊢ ( 𝐾 = 𝑥 ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) |
300 |
298 299
|
syl6ibr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → 𝐾 = 𝑥 ) ) |
301 |
295 300
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = 𝑥 ) ) |
302 |
301
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
303 |
286 302
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
304 |
303
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
305 |
284 304
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
306 |
57 288 197
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
307 |
306
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
308 |
128
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
309 |
305 307 308
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
310 |
264 309
|
seqfveq |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
311 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
312 |
57 75 311
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
313 |
312
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
314 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → 𝐾 = ( 𝑁 + 1 ) ) |
315 |
9 314
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) |
316 |
315
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
317 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
318 |
316 317
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) |
319 |
318
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
320 |
313 319
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
321 |
310 320
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
322 |
266 321
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
323 |
|
elfzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |
324 |
4 323
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |
325 |
77 324
|
mpbid |
⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
326 |
263 322 325
|
mpjaodan |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
327 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
328 |
4 327
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
329 |
47 326 328
|
3eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) ) |