Step |
Hyp |
Ref |
Expression |
1 |
|
seqf1o.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
2 |
|
seqf1o.2 |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
3 |
|
seqf1o.3 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
4 |
|
seqf1o.4 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
5 |
|
seqf1o.5 |
|- ( ph -> C C_ S ) |
6 |
|
seqf1olem.5 |
|- ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
7 |
|
seqf1olem.6 |
|- ( ph -> G : ( M ... ( N + 1 ) ) --> C ) |
8 |
|
seqf1olem.7 |
|- J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
9 |
|
seqf1olem.8 |
|- K = ( `' F ` ( N + 1 ) ) |
10 |
|
seqf1olem.9 |
|- ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
11 |
7
|
ffnd |
|- ( ph -> G Fn ( M ... ( N + 1 ) ) ) |
12 |
|
fzssp1 |
|- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
13 |
|
fnssres |
|- ( ( G Fn ( M ... ( N + 1 ) ) /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) |
14 |
11 12 13
|
sylancl |
|- ( ph -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) |
15 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
16 |
|
fnfi |
|- ( ( ( G |` ( M ... N ) ) Fn ( M ... N ) /\ ( M ... N ) e. Fin ) -> ( G |` ( M ... N ) ) e. Fin ) |
17 |
14 15 16
|
syl2anc |
|- ( ph -> ( G |` ( M ... N ) ) e. Fin ) |
18 |
17
|
elexd |
|- ( ph -> ( G |` ( M ... N ) ) e. _V ) |
19 |
1 2 3 4 5 6 7 8 9
|
seqf1olem1 |
|- ( ph -> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
20 |
|
f1of |
|- ( J : ( M ... N ) -1-1-onto-> ( M ... N ) -> J : ( M ... N ) --> ( M ... N ) ) |
21 |
19 20
|
syl |
|- ( ph -> J : ( M ... N ) --> ( M ... N ) ) |
22 |
|
fex2 |
|- ( ( J : ( M ... N ) --> ( M ... N ) /\ ( M ... N ) e. Fin /\ ( M ... N ) e. Fin ) -> J e. _V ) |
23 |
21 15 15 22
|
syl3anc |
|- ( ph -> J e. _V ) |
24 |
18 23
|
jca |
|- ( ph -> ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) ) |
25 |
|
fssres |
|- ( ( G : ( M ... ( N + 1 ) ) --> C /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) |
26 |
7 12 25
|
sylancl |
|- ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) |
27 |
19 26
|
jca |
|- ( ph -> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) |
28 |
|
f1oeq1 |
|- ( f = J -> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) <-> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
29 |
|
feq1 |
|- ( g = ( G |` ( M ... N ) ) -> ( g : ( M ... N ) --> C <-> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) |
30 |
28 29
|
bi2anan9r |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) <-> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) ) |
31 |
|
coeq1 |
|- ( g = ( G |` ( M ... N ) ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. f ) ) |
32 |
|
coeq2 |
|- ( f = J -> ( ( G |` ( M ... N ) ) o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) |
33 |
31 32
|
sylan9eq |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) |
34 |
33
|
seqeq3d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
35 |
34
|
fveq1d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
36 |
|
simpl |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> g = ( G |` ( M ... N ) ) ) |
37 |
36
|
seqeq3d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , g ) = seq M ( .+ , ( G |` ( M ... N ) ) ) ) |
38 |
37
|
fveq1d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , g ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) |
39 |
35 38
|
eqeq12d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) <-> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) |
40 |
30 39
|
imbi12d |
|- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) <-> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) |
41 |
40
|
spc2gv |
|- ( ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) |
42 |
24 10 27 41
|
syl3c |
|- ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) |
43 |
|
fvres |
|- ( x e. ( M ... N ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) |
44 |
43
|
adantl |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) |
45 |
4 44
|
seqfveq |
|- ( ph -> ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
46 |
42 45
|
eqtrd |
|- ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
47 |
46
|
oveq1d |
|- ( ph -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
48 |
1
|
adantlr |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
49 |
3
|
adantlr |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
50 |
|
elfzuz3 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ K e. ( M ... N ) ) -> N e. ( ZZ>= ` K ) ) |
52 |
|
eluzp1p1 |
|- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
53 |
51 52
|
syl |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
54 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
55 |
54
|
adantl |
|- ( ( ph /\ K e. ( M ... N ) ) -> K e. ( ZZ>= ` M ) ) |
56 |
|
f1of |
|- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
57 |
6 56
|
syl |
|- ( ph -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
58 |
|
fco |
|- ( ( G : ( M ... ( N + 1 ) ) --> C /\ F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
59 |
7 57 58
|
syl2anc |
|- ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
60 |
59 5
|
fssd |
|- ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> S ) |
61 |
60
|
ffvelrnda |
|- ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
62 |
61
|
adantlr |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
63 |
48 49 53 55 62
|
seqsplit |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
64 |
|
elfzp12 |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
65 |
64
|
biimpa |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
66 |
4 65
|
sylan |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
67 |
|
seqeq1 |
|- ( K = M -> seq K ( .+ , ( G o. F ) ) = seq M ( .+ , ( G o. F ) ) ) |
68 |
67
|
eqcomd |
|- ( K = M -> seq M ( .+ , ( G o. F ) ) = seq K ( .+ , ( G o. F ) ) ) |
69 |
68
|
fveq1d |
|- ( K = M -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( seq K ( .+ , ( G o. F ) ) ` K ) ) |
70 |
|
f1ocnv |
|- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
71 |
|
f1of |
|- ( `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
72 |
6 70 71
|
3syl |
|- ( ph -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
73 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
74 |
|
eluzfz2 |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
75 |
4 73 74
|
3syl |
|- ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
76 |
72 75
|
ffvelrnd |
|- ( ph -> ( `' F ` ( N + 1 ) ) e. ( M ... ( N + 1 ) ) ) |
77 |
9 76
|
eqeltrid |
|- ( ph -> K e. ( M ... ( N + 1 ) ) ) |
78 |
|
elfzelz |
|- ( K e. ( M ... ( N + 1 ) ) -> K e. ZZ ) |
79 |
|
seq1 |
|- ( K e. ZZ -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
80 |
77 78 79
|
3syl |
|- ( ph -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
81 |
69 80
|
sylan9eqr |
|- ( ( ph /\ K = M ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
82 |
81
|
oveq1d |
|- ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
83 |
|
simpr |
|- ( ( ph /\ K = M ) -> K = M ) |
84 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
85 |
4 84
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
86 |
85
|
adantr |
|- ( ( ph /\ K = M ) -> M e. ( M ... N ) ) |
87 |
83 86
|
eqeltrd |
|- ( ( ph /\ K = M ) -> K e. ( M ... N ) ) |
88 |
2
|
adantlr |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
89 |
5
|
adantr |
|- ( ( ph /\ K e. ( M ... N ) ) -> C C_ S ) |
90 |
59
|
adantr |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
91 |
77
|
adantr |
|- ( ( ph /\ K e. ( M ... N ) ) -> K e. ( M ... ( N + 1 ) ) ) |
92 |
|
peano2uz |
|- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
93 |
|
fzss1 |
|- ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
94 |
55 92 93
|
3syl |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
95 |
48 88 49 53 89 90 91 94
|
seqf1olem2a |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
96 |
|
1zzd |
|- ( ( ph /\ K e. ( M ... N ) ) -> 1 e. ZZ ) |
97 |
|
elfzuz |
|- ( K e. ( M ... ( N + 1 ) ) -> K e. ( ZZ>= ` M ) ) |
98 |
|
fzss1 |
|- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |
99 |
77 97 98
|
3syl |
|- ( ph -> ( K ... N ) C_ ( M ... N ) ) |
100 |
99
|
sselda |
|- ( ( ph /\ x e. ( K ... N ) ) -> x e. ( M ... N ) ) |
101 |
21
|
ffvelrnda |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( J ` x ) e. ( M ... N ) ) |
102 |
100 101
|
syldan |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) e. ( M ... N ) ) |
103 |
102
|
fvresd |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) |
104 |
|
breq1 |
|- ( k = x -> ( k < K <-> x < K ) ) |
105 |
|
id |
|- ( k = x -> k = x ) |
106 |
|
oveq1 |
|- ( k = x -> ( k + 1 ) = ( x + 1 ) ) |
107 |
104 105 106
|
ifbieq12d |
|- ( k = x -> if ( k < K , k , ( k + 1 ) ) = if ( x < K , x , ( x + 1 ) ) ) |
108 |
107
|
fveq2d |
|- ( k = x -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
109 |
|
fvex |
|- ( F ` if ( x < K , x , ( x + 1 ) ) ) e. _V |
110 |
108 8 109
|
fvmpt |
|- ( x e. ( M ... N ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
111 |
100 110
|
syl |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
112 |
77 78
|
syl |
|- ( ph -> K e. ZZ ) |
113 |
112
|
zred |
|- ( ph -> K e. RR ) |
114 |
113
|
adantr |
|- ( ( ph /\ x e. ( K ... N ) ) -> K e. RR ) |
115 |
|
elfzelz |
|- ( x e. ( K ... N ) -> x e. ZZ ) |
116 |
115
|
adantl |
|- ( ( ph /\ x e. ( K ... N ) ) -> x e. ZZ ) |
117 |
116
|
zred |
|- ( ( ph /\ x e. ( K ... N ) ) -> x e. RR ) |
118 |
|
elfzle1 |
|- ( x e. ( K ... N ) -> K <_ x ) |
119 |
118
|
adantl |
|- ( ( ph /\ x e. ( K ... N ) ) -> K <_ x ) |
120 |
114 117 119
|
lensymd |
|- ( ( ph /\ x e. ( K ... N ) ) -> -. x < K ) |
121 |
|
iffalse |
|- ( -. x < K -> if ( x < K , x , ( x + 1 ) ) = ( x + 1 ) ) |
122 |
121
|
fveq2d |
|- ( -. x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) |
123 |
120 122
|
syl |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) |
124 |
111 123
|
eqtrd |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` ( x + 1 ) ) ) |
125 |
124
|
fveq2d |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
126 |
103 125
|
eqtrd |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
127 |
|
fvco3 |
|- ( ( J : ( M ... N ) --> ( M ... N ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
128 |
21 127
|
sylan |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
129 |
100 128
|
syldan |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
130 |
|
fzp1elp1 |
|- ( x e. ( M ... N ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) |
131 |
100 130
|
syl |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) |
132 |
|
fvco3 |
|- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
133 |
57 132
|
sylan |
|- ( ( ph /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
134 |
131 133
|
syldan |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
135 |
126 129 134
|
3eqtr4d |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) |
136 |
135
|
adantlr |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) |
137 |
51 96 136
|
seqshft2 |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) |
138 |
|
fvco3 |
|- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ K e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) |
139 |
57 77 138
|
syl2anc |
|- ( ph -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) |
140 |
9
|
fveq2i |
|- ( F ` K ) = ( F ` ( `' F ` ( N + 1 ) ) ) |
141 |
|
f1ocnvfv2 |
|- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
142 |
6 75 141
|
syl2anc |
|- ( ph -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
143 |
140 142
|
eqtrid |
|- ( ph -> ( F ` K ) = ( N + 1 ) ) |
144 |
143
|
fveq2d |
|- ( ph -> ( G ` ( F ` K ) ) = ( G ` ( N + 1 ) ) ) |
145 |
139 144
|
eqtr2d |
|- ( ph -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) |
146 |
145
|
adantr |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) |
147 |
137 146
|
oveq12d |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
148 |
95 147
|
eqtr4d |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
149 |
87 148
|
syldan |
|- ( ( ph /\ K = M ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
150 |
83
|
seqeq1d |
|- ( ( ph /\ K = M ) -> seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
151 |
150
|
fveq1d |
|- ( ( ph /\ K = M ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
152 |
151
|
oveq1d |
|- ( ( ph /\ K = M ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
153 |
82 149 152
|
3eqtrd |
|- ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
154 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
155 |
4 154
|
syl |
|- ( ph -> M e. ZZ ) |
156 |
|
elfzuz |
|- ( K e. ( ( M + 1 ) ... N ) -> K e. ( ZZ>= ` ( M + 1 ) ) ) |
157 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
158 |
155 156 157
|
syl2an |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
159 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
160 |
4 159
|
syl |
|- ( ph -> N e. ZZ ) |
161 |
160
|
zcnd |
|- ( ph -> N e. CC ) |
162 |
|
ax-1cn |
|- 1 e. CC |
163 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
164 |
161 162 163
|
sylancl |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
165 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
166 |
77 78 165
|
3syl |
|- ( ph -> ( K - 1 ) e. ZZ ) |
167 |
|
elfzuz3 |
|- ( K e. ( M ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
168 |
77 167
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
169 |
112
|
zcnd |
|- ( ph -> K e. CC ) |
170 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
171 |
169 162 170
|
sylancl |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
172 |
171
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
173 |
168 172
|
eleqtrrd |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
174 |
|
eluzp1m1 |
|- ( ( ( K - 1 ) e. ZZ /\ ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
175 |
166 173 174
|
syl2anc |
|- ( ph -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
176 |
164 175
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( K - 1 ) ) ) |
177 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
178 |
176 177
|
syl |
|- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
179 |
178
|
sselda |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
180 |
179 101
|
syldan |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) e. ( M ... N ) ) |
181 |
180
|
fvresd |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) |
182 |
179 110
|
syl |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
183 |
|
elfzm11 |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) |
184 |
155 112 183
|
syl2anc |
|- ( ph -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) |
185 |
184
|
biimpa |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( x e. ZZ /\ M <_ x /\ x < K ) ) |
186 |
185
|
simp3d |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x < K ) |
187 |
|
iftrue |
|- ( x < K -> if ( x < K , x , ( x + 1 ) ) = x ) |
188 |
187
|
fveq2d |
|- ( x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
189 |
186 188
|
syl |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
190 |
182 189
|
eqtrd |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` x ) ) |
191 |
190
|
fveq2d |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` x ) ) ) |
192 |
181 191
|
eqtr2d |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
193 |
|
peano2uz |
|- ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
194 |
|
fzss2 |
|- ( ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
195 |
176 193 194
|
3syl |
|- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
196 |
195
|
sselda |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
197 |
|
fvco3 |
|- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
198 |
57 197
|
sylan |
|- ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
199 |
196 198
|
syldan |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
200 |
179 128
|
syldan |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
201 |
192 199 200
|
3eqtr4d |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
202 |
201
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
203 |
158 202
|
seqfveq |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) ) |
204 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
205 |
4 154 204
|
3syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
206 |
205
|
sselda |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ( M ... N ) ) |
207 |
206 148
|
syldan |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
208 |
203 207
|
oveq12d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
209 |
196 61
|
syldan |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
210 |
209
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
211 |
1
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
212 |
158 210 211
|
seqcl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S ) |
213 |
59 77
|
ffvelrnd |
|- ( ph -> ( ( G o. F ) ` K ) e. C ) |
214 |
5 213
|
sseldd |
|- ( ph -> ( ( G o. F ) ` K ) e. S ) |
215 |
214
|
adantr |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( G o. F ) ` K ) e. S ) |
216 |
94
|
sselda |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
217 |
216 62
|
syldan |
|- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
218 |
53 217 48
|
seqcl |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) |
219 |
206 218
|
syldan |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) |
220 |
212 215 219
|
3jca |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) |
221 |
3
|
caovassg |
|- ( ( ph /\ ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) |
222 |
220 221
|
syldan |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) |
223 |
7 5
|
fssd |
|- ( ph -> G : ( M ... ( N + 1 ) ) --> S ) |
224 |
|
fssres |
|- ( ( G : ( M ... ( N + 1 ) ) --> S /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) |
225 |
223 12 224
|
sylancl |
|- ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) |
226 |
|
fco |
|- ( ( ( G |` ( M ... N ) ) : ( M ... N ) --> S /\ J : ( M ... N ) --> ( M ... N ) ) -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) |
227 |
225 21 226
|
syl2anc |
|- ( ph -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) |
228 |
227
|
ffvelrnda |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
229 |
179 228
|
syldan |
|- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
230 |
229
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
231 |
158 230 211
|
seqcl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S ) |
232 |
|
elfzuz3 |
|- ( K e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` K ) ) |
233 |
232
|
adantl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` K ) ) |
234 |
100 228
|
syldan |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
235 |
234
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
236 |
233 235 211
|
seqcl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S ) |
237 |
223 75
|
ffvelrnd |
|- ( ph -> ( G ` ( N + 1 ) ) e. S ) |
238 |
237
|
adantr |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( G ` ( N + 1 ) ) e. S ) |
239 |
231 236 238
|
3jca |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) |
240 |
3
|
caovassg |
|- ( ( ph /\ ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
241 |
239 240
|
syldan |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
242 |
208 222 241
|
3eqtr4d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) |
243 |
|
seqm1 |
|- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
244 |
155 156 243
|
syl2an |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
245 |
244
|
oveq1d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
246 |
3
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
247 |
|
elfzelz |
|- ( K e. ( ( M + 1 ) ... N ) -> K e. ZZ ) |
248 |
247
|
adantl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ZZ ) |
249 |
248
|
zcnd |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. CC ) |
250 |
249 162 170
|
sylancl |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( K - 1 ) + 1 ) = K ) |
251 |
250
|
fveq2d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
252 |
233 251
|
eleqtrrd |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
253 |
228
|
adantlr |
|- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
254 |
211 246 252 158 253
|
seqsplit |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
255 |
250
|
seqeq1d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
256 |
255
|
fveq1d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
257 |
256
|
oveq2d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
258 |
254 257
|
eqtrd |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
259 |
258
|
oveq1d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) |
260 |
242 245 259
|
3eqtr4d |
|- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
261 |
153 260
|
jaodan |
|- ( ( ph /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
262 |
66 261
|
syldan |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
263 |
63 262
|
eqtrd |
|- ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
264 |
4
|
adantr |
|- ( ( ph /\ K = ( N + 1 ) ) -> N e. ( ZZ>= ` M ) ) |
265 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) |
266 |
264 265
|
syl |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) |
267 |
110
|
adantl |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
268 |
|
elfzelz |
|- ( x e. ( M ... N ) -> x e. ZZ ) |
269 |
268
|
zred |
|- ( x e. ( M ... N ) -> x e. RR ) |
270 |
269
|
adantl |
|- ( ( ph /\ x e. ( M ... N ) ) -> x e. RR ) |
271 |
160
|
zred |
|- ( ph -> N e. RR ) |
272 |
271
|
adantr |
|- ( ( ph /\ x e. ( M ... N ) ) -> N e. RR ) |
273 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
274 |
272 273
|
syl |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( N + 1 ) e. RR ) |
275 |
|
elfzle2 |
|- ( x e. ( M ... N ) -> x <_ N ) |
276 |
275
|
adantl |
|- ( ( ph /\ x e. ( M ... N ) ) -> x <_ N ) |
277 |
272
|
ltp1d |
|- ( ( ph /\ x e. ( M ... N ) ) -> N < ( N + 1 ) ) |
278 |
270 272 274 276 277
|
lelttrd |
|- ( ( ph /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) |
279 |
278
|
adantlr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) |
280 |
|
simplr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K = ( N + 1 ) ) |
281 |
279 280
|
breqtrrd |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < K ) |
282 |
281 188
|
syl |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
283 |
267 282
|
eqtrd |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` x ) ) |
284 |
283
|
fveq2d |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( ( G |` ( M ... N ) ) ` ( F ` x ) ) ) |
285 |
269
|
adantl |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. RR ) |
286 |
285 281
|
gtned |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K =/= x ) |
287 |
57
|
ad2antrr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
288 |
|
fzelp1 |
|- ( x e. ( M ... N ) -> x e. ( M ... ( N + 1 ) ) ) |
289 |
288
|
adantl |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. ( M ... ( N + 1 ) ) ) |
290 |
287 289
|
ffvelrnd |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... ( N + 1 ) ) ) |
291 |
4
|
ad2antrr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` M ) ) |
292 |
|
elfzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) |
293 |
291 292
|
syl |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) |
294 |
290 293
|
mpbid |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) |
295 |
294
|
ord |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> ( F ` x ) = ( N + 1 ) ) ) |
296 |
6
|
ad2antrr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
297 |
|
f1ocnvfv |
|- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) |
298 |
296 289 297
|
syl2anc |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) |
299 |
9
|
eqeq1i |
|- ( K = x <-> ( `' F ` ( N + 1 ) ) = x ) |
300 |
298 299
|
syl6ibr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> K = x ) ) |
301 |
295 300
|
syld |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> K = x ) ) |
302 |
301
|
necon1ad |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( K =/= x -> ( F ` x ) e. ( M ... N ) ) ) |
303 |
286 302
|
mpd |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... N ) ) |
304 |
303
|
fvresd |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( F ` x ) ) = ( G ` ( F ` x ) ) ) |
305 |
284 304
|
eqtr2d |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
306 |
57 288 197
|
syl2an |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
307 |
306
|
adantlr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
308 |
128
|
adantlr |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
309 |
305 307 308
|
3eqtr4d |
|- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
310 |
264 309
|
seqfveq |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
311 |
|
fvco3 |
|- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
312 |
57 75 311
|
syl2anc |
|- ( ph -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
313 |
312
|
adantr |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
314 |
|
simpr |
|- ( ( ph /\ K = ( N + 1 ) ) -> K = ( N + 1 ) ) |
315 |
9 314
|
eqtr3id |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( `' F ` ( N + 1 ) ) = ( N + 1 ) ) |
316 |
315
|
fveq2d |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( F ` ( N + 1 ) ) ) |
317 |
142
|
adantr |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
318 |
316 317
|
eqtr3d |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( N + 1 ) ) = ( N + 1 ) ) |
319 |
318
|
fveq2d |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( G ` ( F ` ( N + 1 ) ) ) = ( G ` ( N + 1 ) ) ) |
320 |
313 319
|
eqtrd |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) |
321 |
310 320
|
oveq12d |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
322 |
266 321
|
eqtrd |
|- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
323 |
|
elfzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |
324 |
4 323
|
syl |
|- ( ph -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |
325 |
77 324
|
mpbid |
|- ( ph -> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) |
326 |
263 322 325
|
mpjaodan |
|- ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
327 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
328 |
4 327
|
syl |
|- ( ph -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
329 |
47 326 328
|
3eqtr4d |
|- ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( seq M ( .+ , G ) ` ( N + 1 ) ) ) |