| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1ococnv2 | 
							 |-  ( F : A -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1d | 
							 |-  ( F : A -1-1-onto-> B -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( ( _I |` B ) ` C ) )  | 
						
						
							| 4 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )  | 
						
						
							| 5 | 
							
								
							 | 
							f1of | 
							 |-  ( `' F : B -1-1-onto-> A -> `' F : B --> A )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( F : A -1-1-onto-> B -> `' F : B --> A )  | 
						
						
							| 7 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( `' F : B --> A /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							 |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( F o. `' F ) ` C ) = ( F ` ( `' F ` C ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvresi | 
							 |-  ( C e. B -> ( ( _I |` B ) ` C ) = C )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							 |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( ( _I |` B ) ` C ) = C )  | 
						
						
							| 11 | 
							
								3 8 10
							 | 
							3eqtr3d | 
							 |-  ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( F ` ( `' F ` C ) ) = C )  |