Metamath Proof Explorer


Theorem f1ocnvfv2

Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfv2 F:A1-1 ontoBCBFF-1C=C

Proof

Step Hyp Ref Expression
1 f1ococnv2 F:A1-1 ontoBFF-1=IB
2 1 fveq1d F:A1-1 ontoBFF-1C=IBC
3 2 adantr F:A1-1 ontoBCBFF-1C=IBC
4 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
5 f1of F-1:B1-1 ontoAF-1:BA
6 4 5 syl F:A1-1 ontoBF-1:BA
7 fvco3 F-1:BACBFF-1C=FF-1C
8 6 7 sylan F:A1-1 ontoBCBFF-1C=FF-1C
9 fvresi CBIBC=C
10 9 adantl F:A1-1 ontoBCBIBC=C
11 3 8 10 3eqtr3d F:A1-1 ontoBCBFF-1C=C