| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1ococnv2 | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ( 𝐹  ∘  ◡ 𝐹 )  =  (  I   ↾  𝐵 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1d | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ( ( 𝐹  ∘  ◡ 𝐹 ) ‘ 𝐶 )  =  ( (  I   ↾  𝐵 ) ‘ 𝐶 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ( 𝐹  ∘  ◡ 𝐹 ) ‘ 𝐶 )  =  ( (  I   ↾  𝐵 ) ‘ 𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							f1of | 
							⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴  →  ◡ 𝐹 : 𝐵 ⟶ 𝐴 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐹 : 𝐵 ⟶ 𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴  ∧  𝐶  ∈  𝐵 )  →  ( ( 𝐹  ∘  ◡ 𝐹 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ( 𝐹  ∘  ◡ 𝐹 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvresi | 
							⊢ ( 𝐶  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝐶 )  =  𝐶 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( (  I   ↾  𝐵 ) ‘ 𝐶 )  =  𝐶 )  | 
						
						
							| 11 | 
							
								3 8 10
							 | 
							3eqtr3d | 
							⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) )  =  𝐶 )  |