Metamath Proof Explorer


Theorem fveq1d

Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003)

Ref Expression
Hypothesis fveq1d.1 ( 𝜑𝐹 = 𝐺 )
Assertion fveq1d ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq1d.1 ( 𝜑𝐹 = 𝐺 )
2 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )