| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elfzuz | 
							 |-  ( k e. ( K ... N ) -> k e. ( ZZ>= ` K ) )  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							 |-  ( K e. ( ZZ>= ` M ) -> K e. ( ZZ>= ` M ) )  | 
						
						
							| 3 | 
							
								
							 | 
							uztrn | 
							 |-  ( ( k e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anr | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( ZZ>= ` M ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elfzuz3 | 
							 |-  ( k e. ( K ... N ) -> N e. ( ZZ>= ` k ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> N e. ( ZZ>= ` k ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elfzuzb | 
							 |-  ( k e. ( M ... N ) <-> ( k e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` k ) ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( M ... N ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							 |-  ( K e. ( ZZ>= ` M ) -> ( k e. ( K ... N ) -> k e. ( M ... N ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssrdv | 
							 |-  ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) )  |