Metamath Proof Explorer


Theorem elfzuz

Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzuz
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) )

Proof

Step Hyp Ref Expression
1 elfzuzb
 |-  ( K e. ( M ... N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) )
2 1 simplbi
 |-  ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) )