| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elfzuz | 
							⊢ ( 𝑘  ∈  ( 𝐾 ... 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝐾 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							uztrn | 
							⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anr | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑘  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elfzuz3 | 
							⊢ ( 𝑘  ∈  ( 𝐾 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑘 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑘  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑘 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elfzuzb | 
							⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑘  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑘  ∈  ( 𝐾 ... 𝑁 )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssrdv | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾 ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) )  |