| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ≤  𝐾 )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ≤  𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝐾  ≤  𝑀 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐾  ≤  𝑀 )  | 
						
						
							| 9 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝐾  ∈  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							zletr | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑁  ≤  𝐾  ∧  𝐾  ≤  𝑀 )  →  𝑁  ≤  𝑀 ) )  | 
						
						
							| 11 | 
							
								1 9 4 10
							 | 
							syl2an23an | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑁  ≤  𝐾  ∧  𝐾  ≤  𝑀 )  →  𝑁  ≤  𝑀 ) )  | 
						
						
							| 12 | 
							
								6 8 11
							 | 
							mp2and | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ≤  𝑀 )  | 
						
						
							| 13 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ≤  𝑀 ) )  | 
						
						
							| 14 | 
							
								2 4 12 13
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  |