Metamath Proof Explorer
		
		
		
		Description:  Transitive law of ordering for integers.  (Contributed by Alexander van
     der Vekens, 3-Apr-2018)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | zletr | ⊢  ( ( 𝐽  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( ( 𝐽  ≤  𝐾  ∧  𝐾  ≤  𝐿 )  →  𝐽  ≤  𝐿 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝐽  ∈  ℤ  →  𝐽  ∈  ℝ ) | 
						
							| 2 |  | zre | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℝ ) | 
						
							| 3 |  | zre | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ℝ ) | 
						
							| 4 |  | letr | ⊢ ( ( 𝐽  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( ( 𝐽  ≤  𝐾  ∧  𝐾  ≤  𝐿 )  →  𝐽  ≤  𝐿 ) ) | 
						
							| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐽  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( ( 𝐽  ≤  𝐾  ∧  𝐾  ≤  𝐿 )  →  𝐽  ≤  𝐿 ) ) |