Metamath Proof Explorer
		
		
		
		Description:  A triple syllogism inference.  (Contributed by NM, 13-May-2004)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						syl3an.1 | 
						⊢ ( 𝜑  →  𝜓 )  | 
					
					
						 | 
						 | 
						syl3an.2 | 
						⊢ ( 𝜒  →  𝜃 )  | 
					
					
						 | 
						 | 
						syl3an.3 | 
						⊢ ( 𝜏  →  𝜂 )  | 
					
					
						 | 
						 | 
						syl3an.4 | 
						⊢ ( ( 𝜓  ∧  𝜃  ∧  𝜂 )  →  𝜁 )  | 
					
				
					 | 
					Assertion | 
					syl3an | 
					⊢  ( ( 𝜑  ∧  𝜒  ∧  𝜏 )  →  𝜁 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							syl3an.1 | 
							⊢ ( 𝜑  →  𝜓 )  | 
						
						
							| 2 | 
							
								
							 | 
							syl3an.2 | 
							⊢ ( 𝜒  →  𝜃 )  | 
						
						
							| 3 | 
							
								
							 | 
							syl3an.3 | 
							⊢ ( 𝜏  →  𝜂 )  | 
						
						
							| 4 | 
							
								
							 | 
							syl3an.4 | 
							⊢ ( ( 𝜓  ∧  𝜃  ∧  𝜂 )  →  𝜁 )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							3anim123i | 
							⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜏 )  →  ( 𝜓  ∧  𝜃  ∧  𝜂 ) )  | 
						
						
							| 6 | 
							
								5 4
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜏 )  →  𝜁 )  |