Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uztrn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝐾 ) | |
Assertion | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ 𝑍 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝐾 ) | |
2 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
3 | uztrn | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
4 | 3 | ancoms | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
5 | 2 4 | sylanb | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ 𝑍 ) |