Metamath Proof Explorer


Theorem uztrn2

Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis uztrn2.1 𝑍 = ( ℤ𝐾 )
Assertion uztrn2 ( ( 𝑁𝑍𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀𝑍 )

Proof

Step Hyp Ref Expression
1 uztrn2.1 𝑍 = ( ℤ𝐾 )
2 1 eleq2i ( 𝑁𝑍𝑁 ∈ ( ℤ𝐾 ) )
3 uztrn ( ( 𝑀 ∈ ( ℤ𝑁 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) → 𝑀 ∈ ( ℤ𝐾 ) )
4 3 ancoms ( ( 𝑁 ∈ ( ℤ𝐾 ) ∧ 𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀 ∈ ( ℤ𝐾 ) )
5 2 4 sylanb ( ( 𝑁𝑍𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀 ∈ ( ℤ𝐾 ) )
6 5 1 eleqtrrdi ( ( 𝑁𝑍𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀𝑍 )