| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑁 )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							leneg | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀  ≤  𝑁  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≤  𝑁  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 8 | 
							
								2 3 7
							 | 
							syl2anc | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  ≤  𝑁  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							mpbid | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  - 𝑁  ≤  - 𝑀 )  | 
						
						
							| 10 | 
							
								
							 | 
							znegcl | 
							⊢ ( 𝑁  ∈  ℤ  →  - 𝑁  ∈  ℤ )  | 
						
						
							| 11 | 
							
								
							 | 
							znegcl | 
							⊢ ( 𝑀  ∈  ℤ  →  - 𝑀  ∈  ℤ )  | 
						
						
							| 12 | 
							
								
							 | 
							eluz | 
							⊢ ( ( - 𝑁  ∈  ℤ  ∧  - 𝑀  ∈  ℤ )  →  ( - 𝑀  ∈  ( ℤ≥ ‘ - 𝑁 )  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2an | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( - 𝑀  ∈  ( ℤ≥ ‘ - 𝑁 )  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 14 | 
							
								3 2 13
							 | 
							syl2anc | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( - 𝑀  ∈  ( ℤ≥ ‘ - 𝑁 )  ↔  - 𝑁  ≤  - 𝑀 ) )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							mpbird | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  - 𝑀  ∈  ( ℤ≥ ‘ - 𝑁 ) )  |