Metamath Proof Explorer


Theorem uzneg

Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005)

Ref Expression
Assertion uzneg NMM- N

Proof

Step Hyp Ref Expression
1 eluzle NMMN
2 eluzel2 NMM
3 eluzelz NMN
4 zre MM
5 zre NN
6 leneg MNMNNM
7 4 5 6 syl2an MNMNNM
8 2 3 7 syl2anc NMMNNM
9 1 8 mpbid NMNM
10 znegcl NN
11 znegcl MM
12 eluz NMM- NNM
13 10 11 12 syl2an NMM- NNM
14 3 2 13 syl2anc NMM- NNM
15 9 14 mpbird NMM- N