Metamath Proof Explorer


Theorem znegcl

Description: Closure law for negative integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion znegcl NN

Proof

Step Hyp Ref Expression
1 elz NNN=0NN
2 negeq N=0N=0
3 neg0 0=0
4 2 3 eqtrdi N=0N=0
5 0z 0
6 4 5 eqeltrdi N=0N
7 nnnegz NN
8 nnz NN
9 6 7 8 3jaoi N=0NNN
10 1 9 simplbiim NN