Metamath Proof Explorer


Theorem neg0

Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997)

Ref Expression
Assertion neg0 0=0

Proof

Step Hyp Ref Expression
1 df-neg 0=00
2 0cn 0
3 subid 000=0
4 2 3 ax-mp 00=0
5 1 4 eqtri 0=0