Metamath Proof Explorer


Theorem neg0

Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997)

Ref Expression
Assertion neg0 - 0 = 0

Proof

Step Hyp Ref Expression
1 df-neg - 0 = ( 0 − 0 )
2 0cn 0 ∈ ℂ
3 subid ( 0 ∈ ℂ → ( 0 − 0 ) = 0 )
4 2 3 ax-mp ( 0 − 0 ) = 0
5 1 4 eqtri - 0 = 0