Metamath Proof Explorer


Theorem subid

Description: Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subid ( 𝐴 ∈ ℂ → ( 𝐴𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 addid1 ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 )
2 1 oveq1d ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 𝐴 ) = ( 𝐴𝐴 ) )
3 0cn 0 ∈ ℂ
4 pncan2 ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐴 ) = 0 )
5 3 4 mpan2 ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 𝐴 ) = 0 )
6 2 5 eqtr3d ( 𝐴 ∈ ℂ → ( 𝐴𝐴 ) = 0 )