Metamath Proof Explorer


Theorem pncan2

Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005)

Ref Expression
Assertion pncan2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 addcom ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) )
2 1 oveq1d ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = ( ( 𝐴 + 𝐵 ) − 𝐴 ) )
3 pncan ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = 𝐵 )
4 2 3 eqtr3d ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )
5 4 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )