Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pncan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) | |
2 | 1 | oveq1d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = ( ( 𝐴 + 𝐵 ) − 𝐴 ) ) |
3 | pncan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = 𝐵 ) | |
4 | 2 3 | eqtr3d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ) |
5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ) |