Metamath Proof Explorer


Theorem pncan2

Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005)

Ref Expression
Assertion pncan2
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B )

Proof

Step Hyp Ref Expression
1 addcom
 |-  ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) )
2 1 oveq1d
 |-  ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = ( ( A + B ) - A ) )
3 pncan
 |-  ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = B )
4 2 3 eqtr3d
 |-  ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) - A ) = B )
5 4 ancoms
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B )