Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pncan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom | |- ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) ) |
|
2 | 1 | oveq1d | |- ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = ( ( A + B ) - A ) ) |
3 | pncan | |- ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = B ) |
|
4 | 2 3 | eqtr3d | |- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) - A ) = B ) |
5 | 4 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |