Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
2 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
3 |
1 2
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( B + A ) = ( A + B ) ) |
4 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
5 |
|
subadd |
|- ( ( ( A + B ) e. CC /\ B e. CC /\ A e. CC ) -> ( ( ( A + B ) - B ) = A <-> ( B + A ) = ( A + B ) ) ) |
6 |
4 1 2 5
|
syl3anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - B ) = A <-> ( B + A ) = ( A + B ) ) ) |
7 |
3 6
|
mpbird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |