Metamath Proof Explorer


Theorem uzssz

Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion uzssz M

Proof

Step Hyp Ref Expression
1 uzf : 𝒫
2 1 ffvelrni M M 𝒫
3 2 elpwid M M
4 1 fdmi dom =
5 3 4 eleq2s M dom M
6 ndmfv ¬ M dom M =
7 0ss
8 6 7 eqsstrdi ¬ M dom M
9 5 8 pm2.61i M