Metamath Proof Explorer


Theorem eqsstrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrdi.1 φ A = B
eqsstrdi.2 B C
Assertion eqsstrdi φ A C

Proof

Step Hyp Ref Expression
1 eqsstrdi.1 φ A = B
2 eqsstrdi.2 B C
3 2 a1i φ B C
4 1 3 eqsstrd φ A C