Metamath Proof Explorer


Theorem eqsstrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrdi.1 ( 𝜑𝐴 = 𝐵 )
eqsstrdi.2 𝐵𝐶
Assertion eqsstrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrdi.1 ( 𝜑𝐴 = 𝐵 )
2 eqsstrdi.2 𝐵𝐶
3 2 a1i ( 𝜑𝐵𝐶 )
4 1 3 eqsstrd ( 𝜑𝐴𝐶 )