Metamath Proof Explorer


Theorem eqsstrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrdi.1
|- ( ph -> A = B )
eqsstrdi.2
|- B C_ C
Assertion eqsstrdi
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 eqsstrdi.1
 |-  ( ph -> A = B )
2 eqsstrdi.2
 |-  B C_ C
3 2 a1i
 |-  ( ph -> B C_ C )
4 1 3 eqsstrd
 |-  ( ph -> A C_ C )