Metamath Proof Explorer
Description: A chained subclass and equality deduction. (Contributed by Mario
Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrdi.1 |
|- ( ph -> A = B ) |
|
|
eqsstrdi.2 |
|- B C_ C |
|
Assertion |
eqsstrdi |
|- ( ph -> A C_ C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsstrdi.1 |
|- ( ph -> A = B ) |
2 |
|
eqsstrdi.2 |
|- B C_ C |
3 |
2
|
a1i |
|- ( ph -> B C_ C ) |
4 |
1 3
|
eqsstrd |
|- ( ph -> A C_ C ) |