Metamath Proof Explorer


Theorem eqsstrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrd.1
|- ( ph -> A = B )
eqsstrd.2
|- ( ph -> B C_ C )
Assertion eqsstrd
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 eqsstrd.1
 |-  ( ph -> A = B )
2 eqsstrd.2
 |-  ( ph -> B C_ C )
3 1 sseq1d
 |-  ( ph -> ( A C_ C <-> B C_ C ) )
4 2 3 mpbird
 |-  ( ph -> A C_ C )