Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsstrd.1 | |- ( ph -> A = B ) |
|
eqsstrd.2 | |- ( ph -> B C_ C ) |
||
Assertion | eqsstrd | |- ( ph -> A C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrd.1 | |- ( ph -> A = B ) |
|
2 | eqsstrd.2 | |- ( ph -> B C_ C ) |
|
3 | 1 | sseq1d | |- ( ph -> ( A C_ C <-> B C_ C ) ) |
4 | 2 3 | mpbird | |- ( ph -> A C_ C ) |