Metamath Proof Explorer


Theorem eqsstrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrd.1
|- ( ph -> B = A )
eqsstrrd.2
|- ( ph -> B C_ C )
Assertion eqsstrrd
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 eqsstrrd.1
 |-  ( ph -> B = A )
2 eqsstrrd.2
 |-  ( ph -> B C_ C )
3 1 eqcomd
 |-  ( ph -> A = B )
4 3 2 eqsstrd
 |-  ( ph -> A C_ C )