Metamath Proof Explorer


Theorem eqsstrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrd.1 φ B = A
eqsstrrd.2 φ B C
Assertion eqsstrrd φ A C

Proof

Step Hyp Ref Expression
1 eqsstrrd.1 φ B = A
2 eqsstrrd.2 φ B C
3 1 eqcomd φ A = B
4 3 2 eqsstrd φ A C