Metamath Proof Explorer
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrrd.1 |
|
|
|
eqsstrrd.2 |
|
|
Assertion |
eqsstrrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsstrrd.1 |
|
2 |
|
eqsstrrd.2 |
|
3 |
1
|
eqcomd |
|
4 |
3 2
|
eqsstrd |
|