Metamath Proof Explorer


Theorem eqsstrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrd.1 φB=A
eqsstrrd.2 φBC
Assertion eqsstrrd φAC

Proof

Step Hyp Ref Expression
1 eqsstrrd.1 φB=A
2 eqsstrrd.2 φBC
3 1 eqcomd φA=B
4 3 2 eqsstrd φAC