Metamath Proof Explorer


Theorem eqsstrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrd.1 φA=B
eqsstrd.2 φBC
Assertion eqsstrd φAC

Proof

Step Hyp Ref Expression
1 eqsstrd.1 φA=B
2 eqsstrd.2 φBC
3 1 sseq1d φACBC
4 2 3 mpbird φAC