Metamath Proof Explorer


Theorem eqsstrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrd.1 φ A = B
eqsstrd.2 φ B C
Assertion eqsstrd φ A C

Proof

Step Hyp Ref Expression
1 eqsstrd.1 φ A = B
2 eqsstrd.2 φ B C
3 1 sseq1d φ A C B C
4 2 3 mpbird φ A C