Metamath Proof Explorer
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
eqsstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
eqsstrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsstrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
eqsstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
3 |
1
|
sseq1d |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
4 |
2 3
|
mpbird |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |