Metamath Proof Explorer


Theorem eqsstrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrd.1 ( 𝜑𝐴 = 𝐵 )
eqsstrd.2 ( 𝜑𝐵𝐶 )
Assertion eqsstrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqsstrd.2 ( 𝜑𝐵𝐶 )
3 1 sseq1d ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 2 3 mpbird ( 𝜑𝐴𝐶 )