Metamath Proof Explorer


Theorem sseqtrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrd.1 φ A B
sseqtrd.2 φ B = C
Assertion sseqtrd φ A C

Proof

Step Hyp Ref Expression
1 sseqtrd.1 φ A B
2 sseqtrd.2 φ B = C
3 2 sseq2d φ A B A C
4 1 3 mpbid φ A C