Metamath Proof Explorer


Theorem sseqtrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrd.1 φAB
sseqtrd.2 φB=C
Assertion sseqtrd φAC

Proof

Step Hyp Ref Expression
1 sseqtrd.1 φAB
2 sseqtrd.2 φB=C
3 2 sseq2d φABAC
4 1 3 mpbid φAC