Metamath Proof Explorer


Theorem sseqtrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrd.1 ( 𝜑𝐴𝐵 )
sseqtrd.2 ( 𝜑𝐵 = 𝐶 )
Assertion sseqtrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sseqtrd.1 ( 𝜑𝐴𝐵 )
2 sseqtrd.2 ( 𝜑𝐵 = 𝐶 )
3 2 sseq2d ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) )
4 1 3 mpbid ( 𝜑𝐴𝐶 )