Metamath Proof Explorer


Theorem sseqtrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrd.1
|- ( ph -> A C_ B )
sseqtrd.2
|- ( ph -> B = C )
Assertion sseqtrd
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 sseqtrd.1
 |-  ( ph -> A C_ B )
2 sseqtrd.2
 |-  ( ph -> B = C )
3 2 sseq2d
 |-  ( ph -> ( A C_ B <-> A C_ C ) )
4 1 3 mpbid
 |-  ( ph -> A C_ C )