Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseqtrd.1 | |- ( ph -> A C_ B ) |
|
sseqtrd.2 | |- ( ph -> B = C ) |
||
Assertion | sseqtrd | |- ( ph -> A C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrd.1 | |- ( ph -> A C_ B ) |
|
2 | sseqtrd.2 | |- ( ph -> B = C ) |
|
3 | 2 | sseq2d | |- ( ph -> ( A C_ B <-> A C_ C ) ) |
4 | 1 3 | mpbid | |- ( ph -> A C_ C ) |