Metamath Proof Explorer


Theorem eluz

Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005)

Ref Expression
Assertion eluz ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluz1 ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) ) )
2 1 baibd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑀𝑁 ) )