Metamath Proof Explorer


Theorem baibd

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis baibd.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
Assertion baibd ( ( 𝜑𝜒 ) → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 baibd.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 ibar ( 𝜒 → ( 𝜃 ↔ ( 𝜒𝜃 ) ) )
3 2 bicomd ( 𝜒 → ( ( 𝜒𝜃 ) ↔ 𝜃 ) )
4 1 3 sylan9bb ( ( 𝜑𝜒 ) → ( 𝜓𝜃 ) )