Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | baibd.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
Assertion | baibd | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜓 ↔ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
2 | ibar | ⊢ ( 𝜒 → ( 𝜃 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
3 | 2 | bicomd | ⊢ ( 𝜒 → ( ( 𝜒 ∧ 𝜃 ) ↔ 𝜃 ) ) |
4 | 1 3 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜓 ↔ 𝜃 ) ) |