Metamath Proof Explorer


Theorem baibd

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis baibd.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion baibd
|- ( ( ph /\ ch ) -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 baibd.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 ibar
 |-  ( ch -> ( th <-> ( ch /\ th ) ) )
3 2 bicomd
 |-  ( ch -> ( ( ch /\ th ) <-> th ) )
4 1 3 sylan9bb
 |-  ( ( ph /\ ch ) -> ( ps <-> th ) )