Metamath Proof Explorer


Theorem seqf1olem2

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses seqf1o.1 φxSySx+˙yS
seqf1o.2 φxCyCx+˙y=y+˙x
seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
seqf1o.4 φNM
seqf1o.5 φCS
seqf1olem.5 φF:MN+11-1 ontoMN+1
seqf1olem.6 φG:MN+1C
seqf1olem.7 J=kMNFifk<Kkk+1
seqf1olem.8 K=F-1N+1
seqf1olem.9 φgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
Assertion seqf1olem2 φseqM+˙GFN+1=seqM+˙GN+1

Proof

Step Hyp Ref Expression
1 seqf1o.1 φxSySx+˙yS
2 seqf1o.2 φxCyCx+˙y=y+˙x
3 seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
4 seqf1o.4 φNM
5 seqf1o.5 φCS
6 seqf1olem.5 φF:MN+11-1 ontoMN+1
7 seqf1olem.6 φG:MN+1C
8 seqf1olem.7 J=kMNFifk<Kkk+1
9 seqf1olem.8 K=F-1N+1
10 seqf1olem.9 φgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
11 7 ffnd φGFnMN+1
12 fzssp1 MNMN+1
13 fnssres GFnMN+1MNMN+1GMNFnMN
14 11 12 13 sylancl φGMNFnMN
15 fzfid φMNFin
16 fnfi GMNFnMNMNFinGMNFin
17 14 15 16 syl2anc φGMNFin
18 17 elexd φGMNV
19 1 2 3 4 5 6 7 8 9 seqf1olem1 φJ:MN1-1 ontoMN
20 f1of J:MN1-1 ontoMNJ:MNMN
21 19 20 syl φJ:MNMN
22 fex2 J:MNMNMNFinMNFinJV
23 21 15 15 22 syl3anc φJV
24 18 23 jca φGMNVJV
25 fssres G:MN+1CMNMN+1GMN:MNC
26 7 12 25 sylancl φGMN:MNC
27 19 26 jca φJ:MN1-1 ontoMNGMN:MNC
28 f1oeq1 f=Jf:MN1-1 ontoMNJ:MN1-1 ontoMN
29 feq1 g=GMNg:MNCGMN:MNC
30 28 29 bi2anan9r g=GMNf=Jf:MN1-1 ontoMNg:MNCJ:MN1-1 ontoMNGMN:MNC
31 coeq1 g=GMNgf=GMNf
32 coeq2 f=JGMNf=GMNJ
33 31 32 sylan9eq g=GMNf=Jgf=GMNJ
34 33 seqeq3d g=GMNf=JseqM+˙gf=seqM+˙GMNJ
35 34 fveq1d g=GMNf=JseqM+˙gfN=seqM+˙GMNJN
36 simpl g=GMNf=Jg=GMN
37 36 seqeq3d g=GMNf=JseqM+˙g=seqM+˙GMN
38 37 fveq1d g=GMNf=JseqM+˙gN=seqM+˙GMNN
39 35 38 eqeq12d g=GMNf=JseqM+˙gfN=seqM+˙gNseqM+˙GMNJN=seqM+˙GMNN
40 30 39 imbi12d g=GMNf=Jf:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gNJ:MN1-1 ontoMNGMN:MNCseqM+˙GMNJN=seqM+˙GMNN
41 40 spc2gv GMNVJVgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gNJ:MN1-1 ontoMNGMN:MNCseqM+˙GMNJN=seqM+˙GMNN
42 24 10 27 41 syl3c φseqM+˙GMNJN=seqM+˙GMNN
43 fvres xMNGMNx=Gx
44 43 adantl φxMNGMNx=Gx
45 4 44 seqfveq φseqM+˙GMNN=seqM+˙GN
46 42 45 eqtrd φseqM+˙GMNJN=seqM+˙GN
47 46 oveq1d φseqM+˙GMNJN+˙GN+1=seqM+˙GN+˙GN+1
48 1 adantlr φKMNxSySx+˙yS
49 3 adantlr φKMNxSySzSx+˙y+˙z=x+˙y+˙z
50 elfzuz3 KMNNK
51 50 adantl φKMNNK
52 eluzp1p1 NKN+1K+1
53 51 52 syl φKMNN+1K+1
54 elfzuz KMNKM
55 54 adantl φKMNKM
56 f1of F:MN+11-1 ontoMN+1F:MN+1MN+1
57 6 56 syl φF:MN+1MN+1
58 fco G:MN+1CF:MN+1MN+1GF:MN+1C
59 7 57 58 syl2anc φGF:MN+1C
60 59 5 fssd φGF:MN+1S
61 60 ffvelcdmda φxMN+1GFxS
62 61 adantlr φKMNxMN+1GFxS
63 48 49 53 55 62 seqsplit φKMNseqM+˙GFN+1=seqM+˙GFK+˙seqK+1+˙GFN+1
64 elfzp12 NMKMNK=MKM+1N
65 64 biimpa NMKMNK=MKM+1N
66 4 65 sylan φKMNK=MKM+1N
67 seqeq1 K=MseqK+˙GF=seqM+˙GF
68 67 eqcomd K=MseqM+˙GF=seqK+˙GF
69 68 fveq1d K=MseqM+˙GFK=seqK+˙GFK
70 f1ocnv F:MN+11-1 ontoMN+1F-1:MN+11-1 ontoMN+1
71 f1of F-1:MN+11-1 ontoMN+1F-1:MN+1MN+1
72 6 70 71 3syl φF-1:MN+1MN+1
73 peano2uz NMN+1M
74 eluzfz2 N+1MN+1MN+1
75 4 73 74 3syl φN+1MN+1
76 72 75 ffvelcdmd φF-1N+1MN+1
77 9 76 eqeltrid φKMN+1
78 elfzelz KMN+1K
79 seq1 KseqK+˙GFK=GFK
80 77 78 79 3syl φseqK+˙GFK=GFK
81 69 80 sylan9eqr φK=MseqM+˙GFK=GFK
82 81 oveq1d φK=MseqM+˙GFK+˙seqK+1+˙GFN+1=GFK+˙seqK+1+˙GFN+1
83 simpr φK=MK=M
84 eluzfz1 NMMMN
85 4 84 syl φMMN
86 85 adantr φK=MMMN
87 83 86 eqeltrd φK=MKMN
88 2 adantlr φKMNxCyCx+˙y=y+˙x
89 5 adantr φKMNCS
90 59 adantr φKMNGF:MN+1C
91 77 adantr φKMNKMN+1
92 peano2uz KMK+1M
93 fzss1 K+1MK+1N+1MN+1
94 55 92 93 3syl φKMNK+1N+1MN+1
95 48 88 49 53 89 90 91 94 seqf1olem2a φKMNGFK+˙seqK+1+˙GFN+1=seqK+1+˙GFN+1+˙GFK
96 1zzd φKMN1
97 elfzuz KMN+1KM
98 fzss1 KMKNMN
99 77 97 98 3syl φKNMN
100 99 sselda φxKNxMN
101 21 ffvelcdmda φxMNJxMN
102 100 101 syldan φxKNJxMN
103 102 fvresd φxKNGMNJx=GJx
104 breq1 k=xk<Kx<K
105 id k=xk=x
106 oveq1 k=xk+1=x+1
107 104 105 106 ifbieq12d k=xifk<Kkk+1=ifx<Kxx+1
108 107 fveq2d k=xFifk<Kkk+1=Fifx<Kxx+1
109 fvex Fifx<Kxx+1V
110 108 8 109 fvmpt xMNJx=Fifx<Kxx+1
111 100 110 syl φxKNJx=Fifx<Kxx+1
112 77 78 syl φK
113 112 zred φK
114 113 adantr φxKNK
115 elfzelz xKNx
116 115 adantl φxKNx
117 116 zred φxKNx
118 elfzle1 xKNKx
119 118 adantl φxKNKx
120 114 117 119 lensymd φxKN¬x<K
121 iffalse ¬x<Kifx<Kxx+1=x+1
122 121 fveq2d ¬x<KFifx<Kxx+1=Fx+1
123 120 122 syl φxKNFifx<Kxx+1=Fx+1
124 111 123 eqtrd φxKNJx=Fx+1
125 124 fveq2d φxKNGJx=GFx+1
126 103 125 eqtrd φxKNGMNJx=GFx+1
127 fvco3 J:MNMNxMNGMNJx=GMNJx
128 21 127 sylan φxMNGMNJx=GMNJx
129 100 128 syldan φxKNGMNJx=GMNJx
130 fzp1elp1 xMNx+1MN+1
131 100 130 syl φxKNx+1MN+1
132 fvco3 F:MN+1MN+1x+1MN+1GFx+1=GFx+1
133 57 132 sylan φx+1MN+1GFx+1=GFx+1
134 131 133 syldan φxKNGFx+1=GFx+1
135 126 129 134 3eqtr4d φxKNGMNJx=GFx+1
136 135 adantlr φKMNxKNGMNJx=GFx+1
137 51 96 136 seqshft2 φKMNseqK+˙GMNJN=seqK+1+˙GFN+1
138 fvco3 F:MN+1MN+1KMN+1GFK=GFK
139 57 77 138 syl2anc φGFK=GFK
140 9 fveq2i FK=FF-1N+1
141 f1ocnvfv2 F:MN+11-1 ontoMN+1N+1MN+1FF-1N+1=N+1
142 6 75 141 syl2anc φFF-1N+1=N+1
143 140 142 eqtrid φFK=N+1
144 143 fveq2d φGFK=GN+1
145 139 144 eqtr2d φGN+1=GFK
146 145 adantr φKMNGN+1=GFK
147 137 146 oveq12d φKMNseqK+˙GMNJN+˙GN+1=seqK+1+˙GFN+1+˙GFK
148 95 147 eqtr4d φKMNGFK+˙seqK+1+˙GFN+1=seqK+˙GMNJN+˙GN+1
149 87 148 syldan φK=MGFK+˙seqK+1+˙GFN+1=seqK+˙GMNJN+˙GN+1
150 83 seqeq1d φK=MseqK+˙GMNJ=seqM+˙GMNJ
151 150 fveq1d φK=MseqK+˙GMNJN=seqM+˙GMNJN
152 151 oveq1d φK=MseqK+˙GMNJN+˙GN+1=seqM+˙GMNJN+˙GN+1
153 82 149 152 3eqtrd φK=MseqM+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJN+˙GN+1
154 eluzel2 NMM
155 4 154 syl φM
156 elfzuz KM+1NKM+1
157 eluzp1m1 MKM+1K1M
158 155 156 157 syl2an φKM+1NK1M
159 eluzelz NMN
160 4 159 syl φN
161 160 zcnd φN
162 ax-1cn 1
163 pncan N1N+1-1=N
164 161 162 163 sylancl φN+1-1=N
165 peano2zm KK1
166 77 78 165 3syl φK1
167 elfzuz3 KMN+1N+1K
168 77 167 syl φN+1K
169 112 zcnd φK
170 npcan K1K-1+1=K
171 169 162 170 sylancl φK-1+1=K
172 171 fveq2d φK-1+1=K
173 168 172 eleqtrrd φN+1K-1+1
174 eluzp1m1 K1N+1K-1+1N+1-1K1
175 166 173 174 syl2anc φN+1-1K1
176 164 175 eqeltrrd φNK1
177 fzss2 NK1MK1MN
178 176 177 syl φMK1MN
179 178 sselda φxMK1xMN
180 179 101 syldan φxMK1JxMN
181 180 fvresd φxMK1GMNJx=GJx
182 179 110 syl φxMK1Jx=Fifx<Kxx+1
183 elfzm11 MKxMK1xMxx<K
184 155 112 183 syl2anc φxMK1xMxx<K
185 184 biimpa φxMK1xMxx<K
186 185 simp3d φxMK1x<K
187 iftrue x<Kifx<Kxx+1=x
188 187 fveq2d x<KFifx<Kxx+1=Fx
189 186 188 syl φxMK1Fifx<Kxx+1=Fx
190 182 189 eqtrd φxMK1Jx=Fx
191 190 fveq2d φxMK1GJx=GFx
192 181 191 eqtr2d φxMK1GFx=GMNJx
193 peano2uz NK1N+1K1
194 fzss2 N+1K1MK1MN+1
195 176 193 194 3syl φMK1MN+1
196 195 sselda φxMK1xMN+1
197 fvco3 F:MN+1MN+1xMN+1GFx=GFx
198 57 197 sylan φxMN+1GFx=GFx
199 196 198 syldan φxMK1GFx=GFx
200 179 128 syldan φxMK1GMNJx=GMNJx
201 192 199 200 3eqtr4d φxMK1GFx=GMNJx
202 201 adantlr φKM+1NxMK1GFx=GMNJx
203 158 202 seqfveq φKM+1NseqM+˙GFK1=seqM+˙GMNJK1
204 fzp1ss MM+1NMN
205 4 154 204 3syl φM+1NMN
206 205 sselda φKM+1NKMN
207 206 148 syldan φKM+1NGFK+˙seqK+1+˙GFN+1=seqK+˙GMNJN+˙GN+1
208 203 207 oveq12d φKM+1NseqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1
209 196 61 syldan φxMK1GFxS
210 209 adantlr φKM+1NxMK1GFxS
211 1 adantlr φKM+1NxSySx+˙yS
212 158 210 211 seqcl φKM+1NseqM+˙GFK1S
213 59 77 ffvelcdmd φGFKC
214 5 213 sseldd φGFKS
215 214 adantr φKM+1NGFKS
216 94 sselda φKMNxK+1N+1xMN+1
217 216 62 syldan φKMNxK+1N+1GFxS
218 53 217 48 seqcl φKMNseqK+1+˙GFN+1S
219 206 218 syldan φKM+1NseqK+1+˙GFN+1S
220 212 215 219 3jca φKM+1NseqM+˙GFK1SGFKSseqK+1+˙GFN+1S
221 3 caovassg φseqM+˙GFK1SGFKSseqK+1+˙GFN+1SseqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1
222 220 221 syldan φKM+1NseqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1
223 7 5 fssd φG:MN+1S
224 fssres G:MN+1SMNMN+1GMN:MNS
225 223 12 224 sylancl φGMN:MNS
226 fco GMN:MNSJ:MNMNGMNJ:MNS
227 225 21 226 syl2anc φGMNJ:MNS
228 227 ffvelcdmda φxMNGMNJxS
229 179 228 syldan φxMK1GMNJxS
230 229 adantlr φKM+1NxMK1GMNJxS
231 158 230 211 seqcl φKM+1NseqM+˙GMNJK1S
232 elfzuz3 KM+1NNK
233 232 adantl φKM+1NNK
234 100 228 syldan φxKNGMNJxS
235 234 adantlr φKM+1NxKNGMNJxS
236 233 235 211 seqcl φKM+1NseqK+˙GMNJNS
237 223 75 ffvelcdmd φGN+1S
238 237 adantr φKM+1NGN+1S
239 231 236 238 3jca φKM+1NseqM+˙GMNJK1SseqK+˙GMNJNSGN+1S
240 3 caovassg φseqM+˙GMNJK1SseqK+˙GMNJNSGN+1SseqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1=seqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1
241 239 240 syldan φKM+1NseqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1=seqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1
242 208 222 241 3eqtr4d φKM+1NseqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1
243 seqm1 MKM+1seqM+˙GFK=seqM+˙GFK1+˙GFK
244 155 156 243 syl2an φKM+1NseqM+˙GFK=seqM+˙GFK1+˙GFK
245 244 oveq1d φKM+1NseqM+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GFK1+˙GFK+˙seqK+1+˙GFN+1
246 3 adantlr φKM+1NxSySzSx+˙y+˙z=x+˙y+˙z
247 elfzelz KM+1NK
248 247 adantl φKM+1NK
249 248 zcnd φKM+1NK
250 249 162 170 sylancl φKM+1NK-1+1=K
251 250 fveq2d φKM+1NK-1+1=K
252 233 251 eleqtrrd φKM+1NNK-1+1
253 228 adantlr φKM+1NxMNGMNJxS
254 211 246 252 158 253 seqsplit φKM+1NseqM+˙GMNJN=seqM+˙GMNJK1+˙seqK-1+1+˙GMNJN
255 250 seqeq1d φKM+1NseqK-1+1+˙GMNJ=seqK+˙GMNJ
256 255 fveq1d φKM+1NseqK-1+1+˙GMNJN=seqK+˙GMNJN
257 256 oveq2d φKM+1NseqM+˙GMNJK1+˙seqK-1+1+˙GMNJN=seqM+˙GMNJK1+˙seqK+˙GMNJN
258 254 257 eqtrd φKM+1NseqM+˙GMNJN=seqM+˙GMNJK1+˙seqK+˙GMNJN
259 258 oveq1d φKM+1NseqM+˙GMNJN+˙GN+1=seqM+˙GMNJK1+˙seqK+˙GMNJN+˙GN+1
260 242 245 259 3eqtr4d φKM+1NseqM+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJN+˙GN+1
261 153 260 jaodan φK=MKM+1NseqM+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJN+˙GN+1
262 66 261 syldan φKMNseqM+˙GFK+˙seqK+1+˙GFN+1=seqM+˙GMNJN+˙GN+1
263 63 262 eqtrd φKMNseqM+˙GFN+1=seqM+˙GMNJN+˙GN+1
264 4 adantr φK=N+1NM
265 seqp1 NMseqM+˙GFN+1=seqM+˙GFN+˙GFN+1
266 264 265 syl φK=N+1seqM+˙GFN+1=seqM+˙GFN+˙GFN+1
267 110 adantl φK=N+1xMNJx=Fifx<Kxx+1
268 elfzelz xMNx
269 268 zred xMNx
270 269 adantl φxMNx
271 160 zred φN
272 271 adantr φxMNN
273 peano2re NN+1
274 272 273 syl φxMNN+1
275 elfzle2 xMNxN
276 275 adantl φxMNxN
277 272 ltp1d φxMNN<N+1
278 270 272 274 276 277 lelttrd φxMNx<N+1
279 278 adantlr φK=N+1xMNx<N+1
280 simplr φK=N+1xMNK=N+1
281 279 280 breqtrrd φK=N+1xMNx<K
282 281 188 syl φK=N+1xMNFifx<Kxx+1=Fx
283 267 282 eqtrd φK=N+1xMNJx=Fx
284 283 fveq2d φK=N+1xMNGMNJx=GMNFx
285 269 adantl φK=N+1xMNx
286 285 281 gtned φK=N+1xMNKx
287 57 ad2antrr φK=N+1xMNF:MN+1MN+1
288 fzelp1 xMNxMN+1
289 288 adantl φK=N+1xMNxMN+1
290 287 289 ffvelcdmd φK=N+1xMNFxMN+1
291 4 ad2antrr φK=N+1xMNNM
292 elfzp1 NMFxMN+1FxMNFx=N+1
293 291 292 syl φK=N+1xMNFxMN+1FxMNFx=N+1
294 290 293 mpbid φK=N+1xMNFxMNFx=N+1
295 294 ord φK=N+1xMN¬FxMNFx=N+1
296 6 ad2antrr φK=N+1xMNF:MN+11-1 ontoMN+1
297 f1ocnvfv F:MN+11-1 ontoMN+1xMN+1Fx=N+1F-1N+1=x
298 296 289 297 syl2anc φK=N+1xMNFx=N+1F-1N+1=x
299 9 eqeq1i K=xF-1N+1=x
300 298 299 imbitrrdi φK=N+1xMNFx=N+1K=x
301 295 300 syld φK=N+1xMN¬FxMNK=x
302 301 necon1ad φK=N+1xMNKxFxMN
303 286 302 mpd φK=N+1xMNFxMN
304 303 fvresd φK=N+1xMNGMNFx=GFx
305 284 304 eqtr2d φK=N+1xMNGFx=GMNJx
306 57 288 197 syl2an φxMNGFx=GFx
307 306 adantlr φK=N+1xMNGFx=GFx
308 128 adantlr φK=N+1xMNGMNJx=GMNJx
309 305 307 308 3eqtr4d φK=N+1xMNGFx=GMNJx
310 264 309 seqfveq φK=N+1seqM+˙GFN=seqM+˙GMNJN
311 fvco3 F:MN+1MN+1N+1MN+1GFN+1=GFN+1
312 57 75 311 syl2anc φGFN+1=GFN+1
313 312 adantr φK=N+1GFN+1=GFN+1
314 simpr φK=N+1K=N+1
315 9 314 eqtr3id φK=N+1F-1N+1=N+1
316 315 fveq2d φK=N+1FF-1N+1=FN+1
317 142 adantr φK=N+1FF-1N+1=N+1
318 316 317 eqtr3d φK=N+1FN+1=N+1
319 318 fveq2d φK=N+1GFN+1=GN+1
320 313 319 eqtrd φK=N+1GFN+1=GN+1
321 310 320 oveq12d φK=N+1seqM+˙GFN+˙GFN+1=seqM+˙GMNJN+˙GN+1
322 266 321 eqtrd φK=N+1seqM+˙GFN+1=seqM+˙GMNJN+˙GN+1
323 elfzp1 NMKMN+1KMNK=N+1
324 4 323 syl φKMN+1KMNK=N+1
325 77 324 mpbid φKMNK=N+1
326 263 322 325 mpjaodan φseqM+˙GFN+1=seqM+˙GMNJN+˙GN+1
327 seqp1 NMseqM+˙GN+1=seqM+˙GN+˙GN+1
328 4 327 syl φseqM+˙GN+1=seqM+˙GN+˙GN+1
329 47 326 328 3eqtr4d φseqM+˙GFN+1=seqM+˙GN+1