Metamath Proof Explorer


Theorem seq1

Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion seq1 MseqM+˙FM=FM

Proof

Step Hyp Ref Expression
1 seqeq1 M=ifMM0seqM+˙F=seqifMM0+˙F
2 id M=ifMM0M=ifMM0
3 1 2 fveq12d M=ifMM0seqM+˙FM=seqifMM0+˙FifMM0
4 fveq2 M=ifMM0FM=FifMM0
5 3 4 eqeq12d M=ifMM0seqM+˙FM=FMseqifMM0+˙FifMM0=FifMM0
6 0z 0
7 6 elimel ifMM0
8 eqid recxVx+1ifMM0ω=recxVx+1ifMM0ω
9 fvex FifMM0V
10 eqid recxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω=recxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω
11 10 seqval seqifMM0+˙F=ranrecxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω
12 7 8 9 10 11 uzrdg0i seqifMM0+˙FifMM0=FifMM0
13 5 12 dedth MseqM+˙FM=FM