Metamath Proof Explorer


Theorem fveq12d

Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008)

Ref Expression
Hypotheses fveq12d.1 φ F = G
fveq12d.2 φ A = B
Assertion fveq12d φ F A = G B

Proof

Step Hyp Ref Expression
1 fveq12d.1 φ F = G
2 fveq12d.2 φ A = B
3 1 fveq1d φ F A = G A
4 2 fveq2d φ G A = G B
5 3 4 eqtrd φ F A = G B