Metamath Proof Explorer


Theorem fveq12d

Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008)

Ref Expression
Hypotheses fveq12d.1 ( 𝜑𝐹 = 𝐺 )
fveq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion fveq12d ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐵 ) )

Proof

Step Hyp Ref Expression
1 fveq12d.1 ( 𝜑𝐹 = 𝐺 )
2 fveq12d.2 ( 𝜑𝐴 = 𝐵 )
3 1 fveq1d ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )
4 2 fveq2d ( 𝜑 → ( 𝐺𝐴 ) = ( 𝐺𝐵 ) )
5 3 4 eqtrd ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐵 ) )