Metamath Proof Explorer


Theorem fveq12d

Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008)

Ref Expression
Hypotheses fveq12d.1
|- ( ph -> F = G )
fveq12d.2
|- ( ph -> A = B )
Assertion fveq12d
|- ( ph -> ( F ` A ) = ( G ` B ) )

Proof

Step Hyp Ref Expression
1 fveq12d.1
 |-  ( ph -> F = G )
2 fveq12d.2
 |-  ( ph -> A = B )
3 1 fveq1d
 |-  ( ph -> ( F ` A ) = ( G ` A ) )
4 2 fveq2d
 |-  ( ph -> ( G ` A ) = ( G ` B ) )
5 3 4 eqtrd
 |-  ( ph -> ( F ` A ) = ( G ` B ) )