Metamath Proof Explorer


Theorem seqsplit

Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqsplit.1 φxSySx+˙yS
seqsplit.2 φxSySzSx+˙y+˙z=x+˙y+˙z
seqsplit.3 φNM+1
seqsplit.4 φMK
seqsplit.5 φxKNFxS
Assertion seqsplit φseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN

Proof

Step Hyp Ref Expression
1 seqsplit.1 φxSySx+˙yS
2 seqsplit.2 φxSySzSx+˙y+˙z=x+˙y+˙z
3 seqsplit.3 φNM+1
4 seqsplit.4 φMK
5 seqsplit.5 φxKNFxS
6 eluzfz2 NM+1NM+1N
7 3 6 syl φNM+1N
8 eleq1 x=M+1xM+1NM+1M+1N
9 fveq2 x=M+1seqK+˙Fx=seqK+˙FM+1
10 fveq2 x=M+1seqM+1+˙Fx=seqM+1+˙FM+1
11 10 oveq2d x=M+1seqK+˙FM+˙seqM+1+˙Fx=seqK+˙FM+˙seqM+1+˙FM+1
12 9 11 eqeq12d x=M+1seqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxseqK+˙FM+1=seqK+˙FM+˙seqM+1+˙FM+1
13 8 12 imbi12d x=M+1xM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxM+1M+1NseqK+˙FM+1=seqK+˙FM+˙seqM+1+˙FM+1
14 13 imbi2d x=M+1φxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxφM+1M+1NseqK+˙FM+1=seqK+˙FM+˙seqM+1+˙FM+1
15 eleq1 x=nxM+1NnM+1N
16 fveq2 x=nseqK+˙Fx=seqK+˙Fn
17 fveq2 x=nseqM+1+˙Fx=seqM+1+˙Fn
18 17 oveq2d x=nseqK+˙FM+˙seqM+1+˙Fx=seqK+˙FM+˙seqM+1+˙Fn
19 16 18 eqeq12d x=nseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fn
20 15 19 imbi12d x=nxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxnM+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fn
21 20 imbi2d x=nφxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxφnM+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fn
22 eleq1 x=n+1xM+1Nn+1M+1N
23 fveq2 x=n+1seqK+˙Fx=seqK+˙Fn+1
24 fveq2 x=n+1seqM+1+˙Fx=seqM+1+˙Fn+1
25 24 oveq2d x=n+1seqK+˙FM+˙seqM+1+˙Fx=seqK+˙FM+˙seqM+1+˙Fn+1
26 23 25 eqeq12d x=n+1seqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1
27 22 26 imbi12d x=n+1xM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙Fxn+1M+1NseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1
28 27 imbi2d x=n+1φxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙Fxφn+1M+1NseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1
29 eleq1 x=NxM+1NNM+1N
30 fveq2 x=NseqK+˙Fx=seqK+˙FN
31 fveq2 x=NseqM+1+˙Fx=seqM+1+˙FN
32 31 oveq2d x=NseqK+˙FM+˙seqM+1+˙Fx=seqK+˙FM+˙seqM+1+˙FN
33 30 32 eqeq12d x=NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN
34 29 33 imbi12d x=NxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxNM+1NseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN
35 34 imbi2d x=NφxM+1NseqK+˙Fx=seqK+˙FM+˙seqM+1+˙FxφNM+1NseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN
36 seqp1 MKseqK+˙FM+1=seqK+˙FM+˙FM+1
37 4 36 syl φseqK+˙FM+1=seqK+˙FM+˙FM+1
38 eluzel2 NM+1M+1
39 seq1 M+1seqM+1+˙FM+1=FM+1
40 3 38 39 3syl φseqM+1+˙FM+1=FM+1
41 40 oveq2d φseqK+˙FM+˙seqM+1+˙FM+1=seqK+˙FM+˙FM+1
42 37 41 eqtr4d φseqK+˙FM+1=seqK+˙FM+˙seqM+1+˙FM+1
43 42 a1i13 M+1φM+1M+1NseqK+˙FM+1=seqK+˙FM+˙seqM+1+˙FM+1
44 peano2fzr nM+1n+1M+1NnM+1N
45 44 adantl φnM+1n+1M+1NnM+1N
46 45 expr φnM+1n+1M+1NnM+1N
47 46 imim1d φnM+1nM+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fnn+1M+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fn
48 oveq1 seqK+˙Fn=seqK+˙FM+˙seqM+1+˙FnseqK+˙Fn+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
49 simprl φnM+1n+1M+1NnM+1
50 peano2uz MKM+1K
51 4 50 syl φM+1K
52 51 adantr φnM+1n+1M+1NM+1K
53 uztrn nM+1M+1KnK
54 49 52 53 syl2anc φnM+1n+1M+1NnK
55 seqp1 nKseqK+˙Fn+1=seqK+˙Fn+˙Fn+1
56 54 55 syl φnM+1n+1M+1NseqK+˙Fn+1=seqK+˙Fn+˙Fn+1
57 seqp1 nM+1seqM+1+˙Fn+1=seqM+1+˙Fn+˙Fn+1
58 49 57 syl φnM+1n+1M+1NseqM+1+˙Fn+1=seqM+1+˙Fn+˙Fn+1
59 58 oveq2d φnM+1n+1M+1NseqK+˙FM+˙seqM+1+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
60 simpl φnM+1n+1M+1Nφ
61 eluzelz MKM
62 4 61 syl φM
63 peano2uzr MNM+1NM
64 62 3 63 syl2anc φNM
65 fzss2 NMKMKN
66 64 65 syl φKMKN
67 66 sselda φxKMxKN
68 67 5 syldan φxKMFxS
69 4 68 1 seqcl φseqK+˙FMS
70 69 adantr φnM+1n+1M+1NseqK+˙FMS
71 elfzuz3 nM+1NNn
72 fzss2 NnM+1nM+1N
73 45 71 72 3syl φnM+1n+1M+1NM+1nM+1N
74 fzss1 M+1KM+1NKN
75 4 50 74 3syl φM+1NKN
76 75 adantr φnM+1n+1M+1NM+1NKN
77 73 76 sstrd φnM+1n+1M+1NM+1nKN
78 77 sselda φnM+1n+1M+1NxM+1nxKN
79 5 adantlr φnM+1n+1M+1NxKNFxS
80 78 79 syldan φnM+1n+1M+1NxM+1nFxS
81 1 adantlr φnM+1n+1M+1NxSySx+˙yS
82 49 80 81 seqcl φnM+1n+1M+1NseqM+1+˙FnS
83 fveq2 x=n+1Fx=Fn+1
84 83 eleq1d x=n+1FxSFn+1S
85 5 ralrimiva φxKNFxS
86 85 adantr φnM+1n+1M+1NxKNFxS
87 simpr nM+1n+1M+1Nn+1M+1N
88 ssel2 M+1NKNn+1M+1Nn+1KN
89 75 87 88 syl2an φnM+1n+1M+1Nn+1KN
90 84 86 89 rspcdva φnM+1n+1M+1NFn+1S
91 2 caovassg φseqK+˙FMSseqM+1+˙FnSFn+1SseqK+˙FM+˙seqM+1+˙Fn+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
92 60 70 82 90 91 syl13anc φnM+1n+1M+1NseqK+˙FM+˙seqM+1+˙Fn+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
93 59 92 eqtr4d φnM+1n+1M+1NseqK+˙FM+˙seqM+1+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
94 56 93 eqeq12d φnM+1n+1M+1NseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1seqK+˙Fn+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+˙Fn+1
95 48 94 imbitrrid φnM+1n+1M+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙FnseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1
96 47 95 animpimp2impd nM+1φnM+1NseqK+˙Fn=seqK+˙FM+˙seqM+1+˙Fnφn+1M+1NseqK+˙Fn+1=seqK+˙FM+˙seqM+1+˙Fn+1
97 14 21 28 35 43 96 uzind4 NM+1φNM+1NseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN
98 3 97 mpcom φNM+1NseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN
99 7 98 mpd φseqK+˙FN=seqK+˙FM+˙seqM+1+˙FN