| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqsplit.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 2 |
|
seqsplit.2 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 3 |
|
seqsplit.3 |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 4 |
|
seqsplit.4 |
|- ( ph -> M e. ( ZZ>= ` K ) ) |
| 5 |
|
seqsplit.5 |
|- ( ( ph /\ x e. ( K ... N ) ) -> ( F ` x ) e. S ) |
| 6 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ( M + 1 ) ... N ) ) |
| 7 |
3 6
|
syl |
|- ( ph -> N e. ( ( M + 1 ) ... N ) ) |
| 8 |
|
eleq1 |
|- ( x = ( M + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( M + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
| 9 |
|
fveq2 |
|- ( x = ( M + 1 ) -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` ( M + 1 ) ) ) |
| 10 |
|
fveq2 |
|- ( x = ( M + 1 ) -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) |
| 11 |
10
|
oveq2d |
|- ( x = ( M + 1 ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( x = ( M + 1 ) -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) |
| 13 |
8 12
|
imbi12d |
|- ( x = ( M + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( x = ( M + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) ) |
| 15 |
|
eleq1 |
|- ( x = n -> ( x e. ( ( M + 1 ) ... N ) <-> n e. ( ( M + 1 ) ... N ) ) ) |
| 16 |
|
fveq2 |
|- ( x = n -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` n ) ) |
| 17 |
|
fveq2 |
|- ( x = n -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` n ) ) |
| 18 |
17
|
oveq2d |
|- ( x = n -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( x = n -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) |
| 20 |
15 19
|
imbi12d |
|- ( x = n -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) |
| 21 |
20
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) ) |
| 22 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
| 23 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` ( n + 1 ) ) ) |
| 24 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) |
| 25 |
24
|
oveq2d |
|- ( x = ( n + 1 ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) |
| 26 |
23 25
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
| 27 |
22 26
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
| 28 |
27
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) ) |
| 29 |
|
eleq1 |
|- ( x = N -> ( x e. ( ( M + 1 ) ... N ) <-> N e. ( ( M + 1 ) ... N ) ) ) |
| 30 |
|
fveq2 |
|- ( x = N -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` N ) ) |
| 31 |
|
fveq2 |
|- ( x = N -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` N ) ) |
| 32 |
31
|
oveq2d |
|- ( x = N -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 33 |
30 32
|
eqeq12d |
|- ( x = N -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) |
| 34 |
29 33
|
imbi12d |
|- ( x = N -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) |
| 35 |
34
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) ) |
| 36 |
|
seqp1 |
|- ( M e. ( ZZ>= ` K ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 37 |
4 36
|
syl |
|- ( ph -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 38 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M + 1 ) e. ZZ ) |
| 39 |
|
seq1 |
|- ( ( M + 1 ) e. ZZ -> ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) = ( F ` ( M + 1 ) ) ) |
| 40 |
3 38 39
|
3syl |
|- ( ph -> ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) = ( F ` ( M + 1 ) ) ) |
| 41 |
40
|
oveq2d |
|- ( ph -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 42 |
37 41
|
eqtr4d |
|- ( ph -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) |
| 43 |
42
|
a1i13 |
|- ( ( M + 1 ) e. ZZ -> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) |
| 44 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ( M + 1 ) ... N ) ) |
| 46 |
45
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> n e. ( ( M + 1 ) ... N ) ) ) |
| 47 |
46
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) |
| 48 |
|
oveq1 |
|- ( ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) -> ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) |
| 49 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` ( M + 1 ) ) ) |
| 50 |
|
peano2uz |
|- ( M e. ( ZZ>= ` K ) -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
| 51 |
4 50
|
syl |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
| 53 |
|
uztrn |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( M + 1 ) e. ( ZZ>= ` K ) ) -> n e. ( ZZ>= ` K ) ) |
| 54 |
49 52 53
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` K ) ) |
| 55 |
|
seqp1 |
|- ( n e. ( ZZ>= ` K ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 56 |
54 55
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 57 |
|
seqp1 |
|- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) = ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 58 |
49 57
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) = ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 59 |
58
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 60 |
|
simpl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ph ) |
| 61 |
|
eluzelz |
|- ( M e. ( ZZ>= ` K ) -> M e. ZZ ) |
| 62 |
4 61
|
syl |
|- ( ph -> M e. ZZ ) |
| 63 |
|
peano2uzr |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| 64 |
62 3 63
|
syl2anc |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 65 |
|
fzss2 |
|- ( N e. ( ZZ>= ` M ) -> ( K ... M ) C_ ( K ... N ) ) |
| 66 |
64 65
|
syl |
|- ( ph -> ( K ... M ) C_ ( K ... N ) ) |
| 67 |
66
|
sselda |
|- ( ( ph /\ x e. ( K ... M ) ) -> x e. ( K ... N ) ) |
| 68 |
67 5
|
syldan |
|- ( ( ph /\ x e. ( K ... M ) ) -> ( F ` x ) e. S ) |
| 69 |
4 68 1
|
seqcl |
|- ( ph -> ( seq K ( .+ , F ) ` M ) e. S ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq K ( .+ , F ) ` M ) e. S ) |
| 71 |
|
elfzuz3 |
|- ( n e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` n ) ) |
| 72 |
|
fzss2 |
|- ( N e. ( ZZ>= ` n ) -> ( ( M + 1 ) ... n ) C_ ( ( M + 1 ) ... N ) ) |
| 73 |
45 71 72
|
3syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... n ) C_ ( ( M + 1 ) ... N ) ) |
| 74 |
|
fzss1 |
|- ( ( M + 1 ) e. ( ZZ>= ` K ) -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
| 75 |
4 50 74
|
3syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
| 77 |
73 76
|
sstrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... n ) C_ ( K ... N ) ) |
| 78 |
77
|
sselda |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( ( M + 1 ) ... n ) ) -> x e. ( K ... N ) ) |
| 79 |
5
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( K ... N ) ) -> ( F ` x ) e. S ) |
| 80 |
78 79
|
syldan |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( ( M + 1 ) ... n ) ) -> ( F ` x ) e. S ) |
| 81 |
1
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 82 |
49 80 81
|
seqcl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` n ) e. S ) |
| 83 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
| 84 |
83
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( F ` x ) e. S <-> ( F ` ( n + 1 ) ) e. S ) ) |
| 85 |
5
|
ralrimiva |
|- ( ph -> A. x e. ( K ... N ) ( F ` x ) e. S ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. x e. ( K ... N ) ( F ` x ) e. S ) |
| 87 |
|
simpr |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) |
| 88 |
|
ssel2 |
|- ( ( ( ( M + 1 ) ... N ) C_ ( K ... N ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( n + 1 ) e. ( K ... N ) ) |
| 89 |
75 87 88
|
syl2an |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( n + 1 ) e. ( K ... N ) ) |
| 90 |
84 86 89
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` ( n + 1 ) ) e. S ) |
| 91 |
2
|
caovassg |
|- ( ( ph /\ ( ( seq K ( .+ , F ) ` M ) e. S /\ ( seq ( M + 1 ) ( .+ , F ) ` n ) e. S /\ ( F ` ( n + 1 ) ) e. S ) ) -> ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 92 |
60 70 82 90 91
|
syl13anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 93 |
59 92
|
eqtr4d |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) |
| 94 |
56 93
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) <-> ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 95 |
48 94
|
imbitrrid |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
| 96 |
47 95
|
animpimp2impd |
|- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) ) |
| 97 |
14 21 28 35 43 96
|
uzind4 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) |
| 98 |
3 97
|
mpcom |
|- ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) |
| 99 |
7 98
|
mpd |
|- ( ph -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |