| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqsplit.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
seqsplit.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 3 |
|
seqsplit.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 4 |
|
seqsplit.4 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 5 |
|
seqsplit.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 6 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) |
| 12 |
9 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 13 |
8 12
|
imbi12d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 19 |
16 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 20 |
15 19
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 27 |
22 26
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) ) |
| 29 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 34 |
29 33
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) ) |
| 36 |
|
seqp1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 37 |
4 36
|
syl |
⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 38 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ∈ ℤ ) |
| 39 |
|
seq1 |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
| 40 |
3 38 39
|
3syl |
⊢ ( 𝜑 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 42 |
37 41
|
eqtr4d |
⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) |
| 43 |
42
|
a1i13 |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 44 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 46 |
45
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 47 |
46
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 48 |
|
oveq1 |
⊢ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 49 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 50 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 51 |
4 50
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 53 |
|
uztrn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 54 |
49 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 55 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 58 |
49 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 60 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝜑 ) |
| 61 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑀 ∈ ℤ ) |
| 62 |
4 61
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 63 |
|
peano2uzr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 64 |
62 3 63
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 65 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑀 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → ( 𝐾 ... 𝑀 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 67 |
66
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑀 ) ) → 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) |
| 68 |
67 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 69 |
4 68 1
|
seqcl |
⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ) |
| 71 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 72 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 73 |
45 71 72
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 74 |
|
fzss1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 75 |
4 50 74
|
3syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 77 |
73 76
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 78 |
77
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑛 ) ) → 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) |
| 79 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 80 |
78 79
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 81 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 82 |
49 80 81
|
seqcl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 83 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 84 |
83
|
eleq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 85 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 87 |
|
simpr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 88 |
|
ssel2 |
⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) |
| 89 |
75 87 88
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) |
| 90 |
84 86 89
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 91 |
2
|
caovassg |
⊢ ( ( 𝜑 ∧ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ∧ ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 92 |
60 70 82 90 91
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 93 |
59 92
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 94 |
56 93
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 95 |
48 94
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 96 |
47 95
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) ) |
| 97 |
14 21 28 35 43 96
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 98 |
3 97
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 99 |
7 98
|
mpd |
⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |